PHYSICAL REVIEW E 72, 037102 (2005) # Size-temperature phase diagram for small Lennard-Jones clusters Pavel A. Frantsuzov and Vladimir A. Mandelshtam Chemistry Department, University of California at Irvine, Irvine, California 92697, USA (Received 7 May 2005; revised manuscript received 17 June 2005; published 14 September 2005) The size-temperature "phase diagram" for small Lennard-Jones clusters $LJ_n(n \le 147)$ is constructed based on the analysis of the heat capacities $C_v(T)$, computed by the parallel tempering Monte Carlo method. Two types of "phase transitions" are often observed: the higher-temperature solid-liquid transition, due to melting of the cluster core, and the lower-temperature melting that occurs within the surface layer. The latter transition can only be observed for clusters with Mackay packing of the overlayer. DOI: 10.1103/PhysRevE.72.037102 PACS number(s): 64.60.-i ### I. INTRODUCTION Van der Waals interactions between rare gas atoms can be well described by the Lennard-Jones (LJ) potential, $$u_{\text{LJ}}(r) = 4\epsilon [(r/\sigma)^{-12} - (r/\sigma)^{-6}].$$ (1) The possibility of comparing the numerical results with experiments involving rare gas aggregates and the simplicity of the LJ potential placed the LJ systems among the most popular and most well studied. For the last several decades they have played an important role in understanding the equilibrium and dynamics properties of liquids, solids, and clusters. At the same time they were often used as benchmark systems for developing and testing new computational methods such as those designed for global optimization or for statistical mechanics calculations. For example, the Cambridge Cluster Database [1] gives putative global minima configurations for LJ clusters with sizes up to n=1000. For each cluster size such a calculation required substantial computational resources using state-of-the-art optimization algorithms. The global minima describe only the zero-temperature equilibrium properties of clusters, while multiple local minima contribute to the cluster properties at finite temperatures. Various statistical mechanics techniques to characterize the finite temperature effects exist. Among those are the first-principles approaches, such as the molecular dynamics (MD) or Monte Carlo (MC), or approximate approaches, such as the superposition method (see, e.g., Ref. [2]). For selected LJ clusters, disconnectivity graphs providing information about the topology of the potential energy landscape in terms of the energies of local minima and transition states proved to be useful in characterizing their dynamics and equilibrium properties (see, e.g., Ref. [3]). Despite the long history, until recently, hardly any well converged MD or MC calculations were reported, even for relatively small LJ clusters. One simple reason was the difficulty in attaining ergodicity in the LJ systems caused by the complexity of the potential energy landscapes with high dynamic ranges of the well depths and barrier heights. The real breakthrough was due to the adaptation of the parallel tempering method [4], allowing one to cope with the problem. The way it overcomes the high-energy barrier is by coupling a set of statistically independent Monte Carlo Markov chains via exchanges of configurations between replicas of slightly different temperatures. In the first successful application of the parallel tempering method to the challenging case of the LJ₃₈ cluster [5], in order to obtain a well-converged heat capacity curve, as many as 1010 Monte Carlo moves per temperature were required. While the main peak in $C_{\nu}(T)$ assigned to the solid-liquid transition converges very quickly, the real difficulty is associated with a correct description of the solid-solid transition, showing up as a small bump in the $C_v(T)$ curve (see also Refs. [6,7]). The slow convergence in this particular case is mostly due to the long equilibration times needed to find multiple replicas of the global minimum that belongs to a narrow (octahedral) funnel of the potential energy landscape [3]. Although by setting the starting configurations to the global energy minimum reduces the equilibration times by about an order of magnitude, 10⁹ still seems large. The multifunnel nature of the LJ₃₈ is probably not an exception but rather a typical property of most LJ clusters. A later publication [8], which is a continuation of the previous study [9], reported well-converged results of parallel tempering calculations for LJ_n clusters up to n=60. The existence of two peaks in the heat capacity curves was noted and extensively explored. Unfortunately in this study, no satisfactory explanation of the origin of the two peaks was given, while the focus was rather made on identifying the multiple "magic numbers" from the very detailed analysis of the structural and equilibrium properties as a function of n. Moreover, the existence of two distinct types of "phase transitions," as claimed in the present work, was not recognized. Here, in order to support our interpretation, we compute and analyze the heat capacity curves for LJ_n clusters with sizes up to n=147, i.e., up to the completion of the third overlayer. ## II. PARALLEL TEMPERING CALCULATIONS For each cluster size a parallel tempering calculation was carried out on a single processor. Except for not using parallelization, the present algorithm was essentially identical to that described in Ref. [5]. For all *n* we used a hard constraining sphere with four different radii for four different groups of clusters with overlapping size ranges as described in Table I. To reduce the computational burden for group D containing the largest clusters, not all sizes were considered. By the recommendation of Ref. [10] for an optimal temperature schedule, we used a geometric sequence $T_i = T_{\min} \lambda^i$. TABLE I. The cluster sizes n, the constraining radii R_c , and the typical numbers of MC steps per temperature used in the present parallel tempering calculations for the four groups of clusters. | Group | Sizes n | R_c/σ | $N_{ m MC}$ | |-------|---------|--------------|-----------------------| | A | 10-40 | 2.5 | 1.5×10^{9} | | В | 20-57 | 3.0 | 2.0×10^{9} | | C | 50-80 | 3.5 | 1.25×10^{10} | | D | 80–147 | 4.0 | 1.25×10^{10} | The number of temperatures was varied from 20 to 40, depending on the cluster size and temperature range. For each nthe latter was chosen according to the expected nontrivial behavior of the $C_v(T)$ curve, ranging from temperatures as small as $T_{\min} = 0.01 \epsilon k_b^{-1}$ to $T_{\max} = 0.42 \epsilon k_b^{-1}$. The swaps of configurations between the random walks of adjacent temperatures were attempted every once in 100 MC steps per temperature, where one MC step corresponds to an attempt to move one of the atoms using the Metropolis scheme. In most cases the swap rates were about 50% or greater. However, at specific temperatures corresponding to large peaks in the heat capacity curves the swap rates could be noticeably below 50%. (Possibly, the overall convergence would be facilitated by the use of adaptive temperature grids [11].) Also, we took advantage of the knowledge of the global minima configurations | 1 | and used them to set the initial configurations for all the random walks. The heat capacities were computed using $$C_v(T) = \frac{3nk_{\rm B}}{2} + \frac{1}{k_{\rm B}T^2} (\langle E^2 \rangle_T - \langle E \rangle_T^2). \tag{2}$$ In each parallel tempering calculation, the energy moments $\langle E \rangle_T$ and $\langle E^2 \rangle_T$ were partially averaged and written to the disk after every $N_{\rm MC}$ =5×10⁷ MC steps per temperature. In order to obtain smooth temperature-dependent observables for temperatures between the MC grid points, they were calculated by the multihistogram method [12,13]. The convergence was monitored by comparing results obtained from independent runs. Once the comparison was favorable, the calculation was terminated. The typical (albeit not the largest) numbers of MC steps used in our calculations are shown in Table I. Generally, the convergence slows down with the increase of both the cluster size n and the radius of the constraining sphere R_c . While it was easy to obtain converged results for the overall shapes of the heat capacity, curves including the largest peaks, most time was typically spent converging their small features. Our analysis indicates that with the given number ($\sim 10^{10}$) of MC steps for some clusters with $n \ge 100$ the heat capacities may not be well converged. ## III. RESULTS Heat capacities for selected clusters are shown in Figs. 1 and 2. For each n we estimated the temperatures at which the $C_v(T)$ curves have local maxima, as shown in Fig. 3. For all FIG. 1. Heat capacity curves $C_v(T)$ for a selected size range (n=26-39) shifted along the y axis for better visualization. The two peaks are clearly seen. The higher-temperature peak, caused by melting of the cluster core (resembling the structure of LJ_{13}), becomes less prominent with increasing n. The lower-temperature peak, due to the melting transition within the overlayer, increases in height and shifts to the higher temperatures with more atoms in the overlayer. cluster sizes considered $C_v(T)$ has at least one peak, while in many cases we observed two peaks. As can be seen from Fig. 1 for smaller clusters, the higher-temperature peaks are broad. Moreover, their shapes are sensitive to the constraining radius, so that the maxima observed for a particular R_c may not be observed for a larger value of R_c (see Fig. 3). However, for wide ranges of cluster sizes the two heat capacity peaks could be located unambiguously. A striking observation is that most peaks behave regularly as a function of n, which yields a simple interpretation. The clusters with "magic numbers" of atoms, LJ_{13} , LJ_{55} , and LJ_{147} , form complete icosahedral structures, and as such are most stable with respect to structural transformations. For most intermediate sizes, except a few cases (e.g., n = 38,75,76,77), the equilibrium low-temperature structure FIG. 2. The same as Fig. 1, but for a different range of cluster sizes n. FIG. 3. (Color online) Temperatures of the peak maxima of the $C_v(T)$ curves as a function of the cluster size for four different values of the constraining radius, R_c . The positions of the higher-temperature peaks associated with melting of the cluster core (LJ₁₃) for sizes $25 \le n \le 53$ are sensitive to R_c . The arrows indicate the sizes (31, 82) at which the Mackay packing of the overlayer becomes more preferable than the anti-Mackay packing at T=0. can roughly be represented as an icosahedral core with an incomplete overlayer [14–17]. For sizes 13 < n < 31, 55 < n<82 and n=85, the packing of the overlayer has the anti-Mackay structure, while for the other sizes with $n \ge 31$ and ≥82 the overlayer structures are of the Mackay type [14–16]. While at least one peak in the $C_v(T)$ is observed for all sizes, the second, lower-temperature peak exists only for the clusters with Mackay overlayer. (Particularly, the second peak is not observed for LJ_{85} .) The exceptions are LJ_{21} and LJ₂₇ with extremely small low-temperature peaks of unknown nature and LJ₅₈, LJ₇₅, LJ₇₆, and LJ₇₇. The second peak for LJ58 is likely a result of relocation of the three atoms placed on the surface of the 55-atom icosahedral core, although it is not clear why similar effects are not observed for other sizes with anti-Mackay overlayer. The lowertemperature peaks for clusters with n=75,76,77 with nonicosahedral global minima are due to the known solidsolid transition (see, e.g., Ref. [2]) corresponding to global changes of cluster symmetry. A similar solid-solid transition occurs for LJ_{38} [5], although it results in a bump, rather than a peak, in the $C_n(T)$ curve, in addition to the two peaks of the general nature present in the other clusters with a Mackay overlayer. The above analysis unambiguously suggests that the lower-temperature peak for clusters with a Mackay overlayer is due to the Mackay \rightarrow anti-Mackay (M/aM) melting transition of the overlayer, while the higher temperature peak must be associated with the melting transition of the more stable icosahedral core. This interpretation is most clearly supported by Fig. 1 which shows the birth of the lower-temperature peak, at n=31, which then rapidly increases in both the size and temperature. The Mackay-type packing becomes energetically more favorable when there are enough atoms in the overlayer, while the anti-Mackay packing is more favorable entropically. This makes the latter thermodynamically dominant at higher temperatures and as such supports our interpretation of the lower-temperature melting as FIG. 4. Up: The global minimum configuration of LJ₃₅ with Mackay packing of the overlayer. Middle: Snapshot of LJ₃₅ at $T = 0.15 \epsilon k_b^{-1}$, which is between the two heat capacity peaks. The melted overlayer resembles anti-Mackay packing. For the latter case 13 atoms that retain the complete icosahedral structure of LJ₁₃ can easily be identified (down). the M/aM transition. Note also that the two peaks merge for sizes around n=140 with a nearly complete overlayer, i.e., when the latter becomes especially stable. Furthermore, the tail from an adjacent peak may be relatively too large (e.g., for n=38 or $n \ge 135$), resulting in a bump in $C_v(T)$ instead of a peak. All such bumps were ignored when constructing Fig. 3. Although not based on converged calculations, evidence of surface melting in the LJ and other clusters were found and investigated previously [18–22]. References [20,21] explicitly attribute this transition for certain clusters to the M/aM type. Based on a well-converged calculation for the special case of LJ₃₁, Calvo and Doye [23] demonstrated that the low-temperature peak in the $C_v(T)$ curve does correspond to the M/aM transition. In the present work we claim that the M/aM transition is generic for all clusters with a Mackay overlayer. As the main evidence for this claim we use the behavior of the heat capacity peaks as a function of cluster size. A visual analysis (albeit not a quantitative proof) of cluster structures at different temperatures also supports our interpretation. For example, for clusters from Fig. 1 with $n \ge 31$ at temperatures below the low-temperature peak we observe nearly perfect global minima structures with Mackay packing in the overlayer. At temperatures between the two peaks, we typically observe anti-Mackay packing with the cluster core, retaining its icosahedral structure of LJ₁₃. The icosahedral core is destroyed only at substantially higher temperatures. For a mere demonstration (but not a proof) of our interpretation in Fig. 4, we show snapshots of LJ₃₅ in the two distinct regimes. ### IV. CONCLUSIONS In this paper we reported results of parallel tempering Monte Carlo calculations for LJ clusters for sizes $10 \le n \le 147$. We believe that for the temperature ranges considered the main features of the heat capacity curves are reproduced correctly. However, it is possible that in some cases, particularly for $n \ge 100$, the convergence was not sufficient to make a clear judgment about either the shapes or the exact location of some peaks in the $C_v(T)$ curves. Only substantially more extensive parallel tempering calculations may clear this issue. However, independently of such possible errors, our results prove the existence of at least two qualitatively distinct solid-liquid-type transitions in the LJ clusters: a low-temperature M/aM transition within the overlayer, and the higher-temperature solid-liquid transition that occurs within the cluster core. These results are a manifestation of the complexity of the properties of finite systems (clusters) that is expected to disappear only in the bulk limit when the surface effects become relatively unimportant for equilibrium properties. Besides involving larger clusters and certainly being more extensive, our further studies of LJ clusters will also consider equilibrium properties other than $C_v(T)$, such as appropriate spatial correlation functions, in order to gain more insight into the complexity of the phase transitions in these systems. Certainly, clever choices of the order parameters may significantly simplify the analysis. Another interesting question emerging from this and previous studies is whether the quantum effects, due to the finite mass of the rare gas atoms, may change this picture. One step toward answering this question was made in Ref. [7], where it was shown that the M/aM transition that occurs in the classical LJ₃₈ cluster does not occur in the quantum Ne₃₈ cluster, for which the ground state has the anti-Mackay, i.e., liquid-like, overlayer. ### **ACKNOWLEDGMENTS** The NSF support, Grant No. CHE-0414110, is acknowledged. V. A. M. is an Alfred P. Sloan research fellow. We are grateful to Florent Calvo for pointing our attention to some existing literature on surface melting and to Cristian Predescu for his comments on the parallel tempering procedure. Figure 4 was generated with a VMD software package Ref. [24]. - [1] http://www-wales.ch.cam.ac.uk/CCD.html - [2] J. P. K. Doye and F. Calvo, J. Chem. Phys. 116, 8307 (2002). - [3] J. P. K. Doye, M. A. Miller, and D. J. Wales, J. Chem. Phys. 111, 8417 (1999). - [4] C. J. Geyer, in *Computing Science and Statistics*, Proceedings of the 23rd Symposium on the Interface, edited by E. M. Keramigas (Interface Foundation, Fairfax, 1991), pp. 156–163; K. Hukushima and K. Nemoto, J. Phys. Soc. Jpn. 65, 1604 (1996). - [5] J. P. Neirotti, F. Calvo, D. L. Freeman, and J. D. Doll, J. Chem. Phys. 112, 10340 (2000); F. Calvo, J. P. Neirotti, D. L. Freeman, and J. D. Doll, *ibid.* 112, 10350 (2000). - [6] D. Sabo, D. L. Freeman, and J. D. Doll, J. Chem. Phys. 122, 094716 (2005). - [7] C. Predescu, P. A. Frantsuzov, and V. A. Mandelshtam, J. Chem. Phys. 122, 154305 (2005). - [8] D. D. Frantz, J. Chem. Phys. 115, 6136 (2001). - [9] D. D. Frantz, J. Chem. Phys. 102, 3747 (1995). - [10] C. Predescu, M. Predescu, and C. V. Ciobanu, J. Chem. Phys. 120, 4119 (2004). - [11] K. Hukushima and K. Nemoto, J. Phys. Soc. Jpn. 65, 1604 (1996). - [12] A. M. Ferrenberg and R. H. Swendsen, Phys. Rev. Lett. **63**, 1195 (1989). - [13] P. Labastie and R. L. Whetten, Phys. Rev. Lett. 65, 1567 (1990). - [14] J. A. Northby, J. Chem. Phys. 87, 6166 (1987). - [15] J. P. K. Doye, D. J. Wales, and R. S. Berry, J. Chem. Phys. 103, 4234 (1995). - [16] R. H. Leary, J. Global Optim. 11, 35 (1997). - [17] D. J. Wales and J. P. K. Doye, J. Phys. Chem. A 101, 5111 (1997). - [18] H.-P. Cheng and R. S. Berry, Phys. Rev. A 45, 7969 (1992). - [19] F. Calvo and P. Labastie, Chem. Phys. Lett. **258**, 233 (1996). - [20] J. P. K. Doye and D. J. Wales, Z. Phys. D: At., Mol. Clusters 40, 466 (1997). - [21] S. C. Hendy and B. D. Hall, Phys. Rev. B 64, 085425 (2001). - [22] F. Calvo and F. Spiegelman, J. Chem. Phys. 120, 9684 (2004). - [23] F. Calvo and J. P. K. Doye, Phys. Rev. E **63**, 010902(R) (2000). - [24] W. Humphrey, A. Dalke, and K. Schulten, J. Mol. Graphics 14, 33 (1996).